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Abstract

When agents collaborate to perform a control task, it is of interest to characterize
the set of joint probability distributions they can achieve on their joint action space
when they are passively provided with external common randomness. We give a
simple counterexample to a natural conjecture about this class of joint distributions.
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1 Introduction

Consider a multiagent control problem where each agent takes actions based
on its own observations. Often an external source, e.g. a satellite with a view
of the entire field of operations, can passively provide common randomness
to the agents, which enables them to increase the set of achievable joint dis-
tributions on their joint action space. It is of interest to characterize this set
of achievable joint distributions on the joint action space of the agents. Our
main contribution is to give a simple counterexample to a natural conjecture
about this class of joint distributions.
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2 Motivation

Let us motivate the importance of the class of joint distributions we are study-
ing, through a simple game theoretic example. For basic concepts from game
theory see [6] or [12]. Further motivation for the study of common randomness
comes from game theory, information theory, and cryptography, where its role
has been extensively explored [1–4,7–10,13,14,18–20].

Consider a zero sum game between two players. Let U denote the set of pure
strategies of player I and V the set of pure strategies of player II. Assume
that both these sets are finite. Let r : U × V 7→ R denote the payoff to
player I from player II when the pure strategies played are u ∈ U and v ∈ V
respectively. Player I wishes to maximize and player II to minimize the ex-
pected payoff. Each player acts in his or her own interest, i.e. the game is
non-cooperative. The traditional solution concept for a non-cooperative game
is Nash equilibrium, i.e. a strategy pair where each player’s strategy is a best
response to that of the other player.

Nash equilibrium for zero sum games need not exist in pure strategies. A
simple example is the zero sum game with pure strategy sets U = {U,D} and
V = {L,R}, and with the payoff function :

L R

U 1 0

D 0 1

However every zero sum game admits a Nash equilibrium in privately ran-
domized strategies [16,17] 3 . Let P(U) and P(V) denote the respective sets of
privately randomized strategies. A Nash equilibrium (σ∗, τ ∗) is characterized
by the saddle point condition :

r(σ∗, τ ∗)
∆
= sup

σ∈P(U)
inf

τ∈P(V)
r(σ, τ) = inf

τ∈P(V)
sup

σ∈P(U)
r(σ, τ) ,

and in [16,17] it is shown that such a saddle point exists.

We now formulate a distributed zero-sum game. We think of the minimizing
player as being represented by a number of distributed agents. For instance,
actuators associated to the sensors in a sensor network may act as such a

3 Note that the concept of Nash equilibrium only appeared later [11].
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player in a game against an adversary [15]. For simplicity, focus on the situ-
ation where there are two agents that together form the minimizing player,
call them IIA and IIB respectively. Thus we now have a game between three
agents : I, IIA, and IIB, with the latter two working together as a single
player against the first. Let U , VA, and VB denote the set of pure strate-
gies of agents I. IIA, and IIB respectively; assume these are finite sets. Let
r : U × VA × VB 7→ R denote the payoff to player I from player II when
the pure strategies used are u ∈ U , vA ∈ VA, and vB ∈ VB respectively. Player
I wishes to maximize and player II to minimize the expected payoff. A pair
of pure strategies u ∈ U and (vA, vB) ∈ VA × VB would be called a Nash
equilibrium if the strategy of each player is a best response to the strategy of
the other player. More generally, this terminology can be applied to a pair of
randomized strategies.

The importance of the set of joint probability distributions achievable by the
collaborating distributed agents representing player II may be seen through
an example. Let U = VA = VB = {0, 1}, and let r(u, vA, vB) be given by :

u = 1 vB = 1 vB = 0

vA = 1 20 0

vA = 0 1 30

and

u = 0 vB = 1 vB = 0

vA = 1 20 1

vA = 0 0 30

If the agents IIA and IIB are only allowed private randomization, there is
no Nash equilibrium in this game even in randomized strategies. To see this,
consider the randomized strategy of player I, choosing u = 1 with probability
β, 0 ≤ β ≤ 1. The following matrix gives the view the distributed player II
has of the payoff :

vB = 1 vB = 0

vA = 1 20 1− β

vA = 0 β 30

When the agents representing player II have no common randomness, their
best response is given by :

range best response of II best response of I to this

β < 1
2

(0, 1) v = 1

β > 1
2

(1, 0) v = 0

β = 1
2

(1, 0) or(0, 1) v = 0 or v = 1 resp.
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Examining this shows that there is no Nash equilibrium in this game. More
generally, if not enough common randomness is provided to the agents IIA
and IIB, there is again no Nash equilibria in randomized strategies. As in
the preceding analysis, for the randomized strategy of player I of u = 1 with
probability β, 0 ≤ β ≤ 1, if there is less than one bit of common randomness
available between the two agents comprising player II, the best response of
this distributed player becomes :

range best response of II best response of I to this

β = 1
2

uneven mixture of (0, 1) and (1, 0) v = 0 or v = 1 resp.

Again one sees that there is no Nash equilibrium.

In the game theoretic example of this section, the agents take actions with-
out any observations. In control scenarios, collaborating agents would have
individual observations and seek to create a joint distribution on their joint
action space based on these observations and passively provided external com-
mon randomness. In the next section we discuss the control scenario.

3 Common randomness and distributed control

Consider a distributed controller comprised, for simplicity, of exactly two
agents. The agents observe jointly distributed random variables A and B re-
spectively . The agents are also provided with external common randomness,
represented by a random variable W . The external randomness is assumed
to be passively provided, hence independent of the observations. The agents
wish take actions X and Y respectively. Each agent can choose its action using
an arbitrary privately randomized function of its observation and of the ex-
ternally provided common randomness. All the random variables are assumed
to be finite. Let γ(a, b) denote the joint distribution of the observations (A,B).

Thus we can achieve joint distributions on (X, Y,A,B,W ) of the form :

p(w)p(x | a, w)p(y | b, w)γ(a, b) . (1)

This class is characterized by the conditions :
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(A,B)∼ γ(a, b)

W q (A,B)

I(X;Y | A,B,W ) = 0

I(X;B | A,W ) = 0

I(Y ;A | B,W ) = 0 ,

(2)

that is to say (A,B) has joint distribution γ(a, b), W is independent of (A,B),
and certain conditional mutual informations are zero. For basic notions in
information theory see e.g. [5]. To see that the form (1) implies the conditions
(2) is straightforward. For the converse, first note that the first three parts of
conditions (2) imply the form :

p(x | a, b, w)p(y | a, b, w)γ(a, b)p(w) .

The fourth part implies that p(x | a, b, w) = p(x | a, w) and the fifth part
implies that p(y | a, b, w) = p(y | b, w), completing the proof. Note that the
conditions (2) are also equivalent to :

(A,B)∼ γ(a, b)

W q (A,B)

I(X;B, Y | A,W ) = 0

I(Y ;A,X | B,W ) = 0 .

(3)

This can be seen from the chain rules :

I(X;B, Y | A,W ) = I(X;B | A,W ) + I(X;Y | A,B,W )

I(Y ;A,X | B,W ) = I(Y ;A | B,W ) + I(X;Y | A,B,W ) ,

and the nonnegativity of mutual information.

We turn now to the main point of this note. The salient characteristic of the
distributed creation of the pair (X,Y ) from (A,B) is that X is created with
access to A but without reference to B and Y is created with access to B
but without reference to A. Thus it is natural to conjecture that for every
(X, Y,A,B) with (A,B) ∼ γ(a, b) satisfying the conditions :

(A,B)∼ γ(a, b)

I(X;B | A) = 0

I(Y ;A | B) = 0 ,

(4)
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it would be possible to find some W (on a possibly augmented sample space)
such that (X,Y,A,B,W ) satisfy conditions (2). It turns out that this con-
jecture is false, as we will now show. Apart from the general discussion of
the importance of externally provided common randomness in control and the
formulation of distributed zero sum games, we view this counterexample as
the main contribution of this paper. It highlights an inherent limitation on
what is achievable by passively provided external common randomness.

Let X = Y = {1, 2, 3} and A = B = {0, 1}. Let γ(a, b) be the uniform distri-
bution assigning probability 1

4
to each (a, b). The joint distribution of (X, Y )

conditioned on (a, b) is described as below :

(a, b) p(x, y | a, b)

(1, 1)


1
3

0 0

0 1
3

0

0 0 1
3



(a, b) p(x, y | a, b)

(1, 0)


0 1

3
0

1
3

0 0

0 0 1
3


(a, b) p(x, y | a, b)

(0, 1)


0 1

3
0

0 0 1
3

1
3

0 0



(a, b) p(x, y | a, b)

(0, 0)


0 0 1

3

0 1
3

0

1
3

0 0


Here the rows of p(x, y | a, b) are indexed by x = 1, 2, 3 and the columns by
y = 1, 2, 3. Note that p(x | a, b) = 1

3
for all (x, a, b), so X q (A,B). Similarly,

Y q (A,B). This implies that (4) holds.

Suppose it were possible to define finite random variables (X, Y,A,B,W ) with
(X, Y,A,B) having the above joint distribution and such that (1) holds. Then
the conditions in (2) and (3) must hold, and we will use these in the ensuing
analysis. Pick any w ∈ W . Writing p(x, y, a, b, w) for P (X = x, Y = y, A =
a,B = b,W = w), we have :

p(1, 1, 1, 1, w)
(a)
= P (X = 1, A = 1, B = 1,W = w)
(b)
= P (X = 1 | A = 1,W = w)P (B = 1 | A = 1,W = w)P (A = 1,W = w)
(c)
= P (X = 1 | A = 1,W = w)P (B = 0 | A = 1,W = w)P (A = 1,W = w)

= P (X = 1, A = 1, B = 0,W = w)

= p(1, 2, 1, 0, w) .
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Here (a) is valid because {X = 1, A = 1, B = 1} ⇒ {Y = 1}, (b) is valid
by the conditional independence of X and B given (A,W ), and (c) is valid
because P (B = 0 | A = 1,W = w) = P (B = 1 | A = 1,W = w).

If we had dropped the X = 1 condition at the first step and then replaced
A = 1 by A = 0 we would have shown that

p(1, 1, 1, 1, w) = p(3, 1, 0, 1, w) .

We now list the equalities of this form that we can show. Keeping A = 1 and
flipping B while leaving X unchanged gives the equations :

p(1, 1, 1, 1, w) = p(1, 2, 1, 0, w) ;

p(2, 2, 1, 1, w) = p(2, 1, 1, 0, w) ; and

p(3, 3, 1, 1, w) = p(3, 3, 1, 0, w) ,

the first of which was proved in detail above. Keeping A = 0 and flipping B
while leaving X unchanged gives :

p(1, 2, 0, 1, w) = p(1, 3, 0, 0, w) ;

p(2, 3, 0, 1, w) = p(2, 2, 0, 0, w) ; and

p(3, 1, 0, 1, w) = p(3, 1, 0, 0, w) .

Keeping B = 1 and flipping A while leaving Y unchanged gives :

p(1, 1, 1, 1, w) = p(3, 1, 0, 1, w) ;

p(2, 2, 1, 1, w) = p(1, 2, 0, 1, w) ; and

p(3, 3, 1, 1, w) = p(2, 3, 0, 1, w) ,

and finally, keeping B = 0 and flipping A while leaving Y unchanged gives :

p(2, 1, 1, 0, w) = p(3, 1, 0, 0, w) ;

p(1, 2, 1, 0, w) = p(2, 2, 0, 0, w) ; and

p(3, 3, 1, 0, w) = p(1, 3, 0, 0, w) .

We conclude that p(x, y, a, b, w) is the same for all (x, y, a, b) for the chosen w.
Since this is true for every w, we conclude that X q Y . But this is not true,
because, for instance, P (X = 3 | Y = 1) = 1

2
6= P (X = 3).
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4 Concluding remarks

We discussed the importance of externally provided common randomness in
distributed control. We formulated a class of so called distributed zero sum
games; this formulation is naturally motivated by problems in the emerging
field of sensor networks. We discussed the characterization of the class of joint
probability distributions that can be achieved on their joint action space by a
set of distributed agents with individual observations, when they are passively
provided with external common randomness. We gave a counterexample to
a natural conjecture about this class of distributions. This counterexample
brings out an inherent limitation on what is achievable by passively provided
external common randomness.
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